The mammalian target of rapamycin pathway in the basolateral amygdala is critical for nicotine-induced behavioural sensitization.
نویسندگان
چکیده
Repeated exposure to nicotine increases psychomotor activity. Long-lasting neural plasticity changes that contribute to the nicotine-induced development of locomotor sensitization have been identified. The mammalian target of rapamycin complex 1 (mTORC1) signalling pathway is involved in regulating the neuroplasticity of the central nervous system. In this study, we examined the role of mTORC1 in the amygdala in nicotine-induced locomotor sensitization. Rapamycin, an inhibitor of mTORC1, was infused into the basolateral amygdala (BLA) and central amygdala (CeA) or systemically administered to investigate the role of the mTORC1 in the development and expression of nicotine-induced locomotor sensitization. We found that locomotor activity progressively increased during the initiation of nicotine-induced locomotor sensitization and the expression of nicotine sensitization was induced by nicotine challenge injection (0.35 mg/kg s.c.) after five days of withdrawal. The initiation of nicotine-induced locomotor sensitization was accompanied by the increased phosphorylated level of mTORC1 downstream target proteins including p-p70s6k and p-4EBP in the BLA, but not CeA. Intra-BLA infusion or systemic administration of rapamycin blocked locomotor activity. Increased p-p70s6k and p-4EBP were also observed in the expression of nicotine sensitization, which was demonstrated to be inhibited by systemic rapamycin administration. Our findings indicated that mTORC1 activity in the BLA, but not the CeA, mediated the initiation and expression of nicotine-induced locomotor sensitization, and may become a potential target for the treatment of nicotine addiction.
منابع مشابه
Evaluation of the Effects of Nicotine on Mammalian Target of Rapamycin Complex 2 and Signal Transducer and Activator of Transcription 3 Genes Expression in a Mouse Model of Allergic Asthma: An experimental study
Background & Aims: Allergic diseases have increased in the last decade worldwide and researchers have been trying to introduce new strategies and drugs to treat these types of diseases. Nicotine shows anti-inflammatory properties and the studies have revealed that it can reduce the inflammation and the allergic responses. The mammalian target of rapamycin (mTOR) is a multifunctional protein kin...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats
Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...
متن کاملMicroinjection of WIN55,212-2 as a Cannabinoid Agonist into the Basolateral Amygdala Induces Sensitization to Morphine in Rats
Introduction: Previous studies have shown that the basolateral amygdale (BLA) is rich of CB1 cannabinoid receptors and involved in cannabinoid-induced antinociception. Also, it seems that there are functional interactions between the cannabinoid CB1 and opioid receptors in the process of sensitization to opiates. In the present study, we tried to examine the role of intra-BLA cannabinoid rece...
متن کاملGlutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2014